Wednesday, July 15, 2009
Tuesday, July 14, 2009
Statistical Pattern Recognition
Statistical Pattern Recognition
Andrew R. Webb | ISBN: 0-470-84513-9 | 504 pgs | 3 mb
Statistical pattern recognition is a term used to cover all stages of an investigation from problem formulation and data collection through to discrimination and classification, assessment of results and interpretation. Some of the basic terminology is introduced and two complementary approaches to discrimination described.
This book describes basic pattern recognition procedures, together with practical applications of the techniques on real-world problems. A strong emphasis is placed on the statistical theory of discrimination, but clustering also receives some attention. Thus, the subject matter of this book can be summed up in a single word: ‘classification’, both supervised (using class information to design a classifier – i.e. discrimination) and unsupervised (allocating to groups without class information – i.e. clustering).
Pattern recognition as a field of study developed significantly in the 1960s. It was very much an interdisciplinary subject, covering developments in the areas of statistics, engineering, artificial intelligence, computer science, psychology and physiology, among others. Some people entered the field with a real problem to solve. The large numbers of applications, ranging from the classical ones such as automatic character recognition and medical diagnosis to the more recent ones in data mining (such as credit scoring, consumer sales analysis and credit card transaction analysis), have attracted considerable research effort, with many methods developed and advances made. Other researchers were motivated by the development of machines with ‘brain-like’ performance, that in some way could emulate human performance. There were many over-optimistic and unrealistic claims made, and to some extent there exist strong parallels with the growth of research on knowledge-based systems in the 1970s and neural networks in the 1980s.
...
Download...
Mirror
Monday, July 13, 2009
Sunday, July 12, 2009
Photoshop CS3 A–Z
Photoshop CS3 A–Z
Tools and features illustrated ready reference
Philip Andrews | ISBN 978-0-240-52065-0 | PDF | 321 pgs | 37mb
The CS3 version, just like the releases before it, is a state-of-the-art image-editing program full of the features and functions that digital photographers and desktop image makers desire the most.Download...
In fact, the program has become so comprehensive that producing an illustrated A–Z book like this one is not just a nicety, but has become a necessity. The software coversso many areas that Photoshop users needed a quick ready reference guide to all the major tools and features.
All entries include shortcut keys, menu locations and are cross-referenced to other Photoshop features that relate. Many features also include step-by-step guides to their usage and extended visual examples of the effects of using different settings on your pictures.
Keep this ready reference handy for all those occasions when you ask yourself ‘What does that do?’
But most of all keep enjoying your digital image making!
Mirror
Making and Selling a Short Film
Producing Independent 2D Character Animation:
Making and Selling a Short Film
Mark Simon | ISBN 0-240-80513-5 | PDF | 433 pgs | 38mb
If you have this book in your hands right now, there is a pretty good chance that you are thinking about making your own film. If you are feeling the urge to animate, do it. You should absolutely be making your own films. With advancements in technology, it is easier to make a film these days than it ever has been. Films are hard work, no doubt about that. You will put in long hours drawing thousands of
drawings, each one only slightly different from the one before, and you will draw many of those drawings over and over until you get them perfect. But when you finish, you’ll be a filmmaker! You’ll have a film.
If you make your own film, you will have a place in the pantheon of animation. And don’t forget, the industry moves forward through the work of independent animators as much as it depends on animated features, television series, and technological advancements. Even more importantly, after making a film, you’ll be a better animator. Once you’ve handled the entire process, you’ll be better at being a
member of an animation production crew, even if you have worked in animation for years. If you are just learning to animate, you won’t have to wonder about the mysteries of animation, or spend years trying to figure them out.
Download...
Mirror
Matematika adalah Sederhana
PADA hakikatnya, matematika adalah salah satu sarana untuk menyelesaikan suatu permasalahan. Tetapi pada perkembangannya, matematika justru dianggap sebagai masalah dan bukan alat bantu untuk menyelesaikan masalah.
JIKA kita memahami konsep dasar matematika secara benar maka kita akan mendapatkan manfaat yang cukup besar. Konsep dasar pada matematika sebenarnya sangat sederhana. Salah satu konsep tersebut adalah konsep tentang sudut.
Kita semua tahu bahwa jumlah sudut-sudut dalam segi n adalah (n-2)180°. Membuktikan kebenaran rumus ini secara matematis pun merupakan hal yang cukup mudah. Tetapi, untuk penyegaran mari kita perhatikan uraian singkat berikut ini:
Kita ambil salah satu kasus, berapakah jumlah sudut-sudut dalam segi lima? Untuk menjawab pertanyaan ini, kita bisa membagi segi lima menjadi tiga buah segi tiga (lihat gambar).
Berdasarkan gambar di atas kita bisa mengemukakan bahwa jumlah sudut-sudut dalam segi lima adalah sama dengan jumlah sudut-sudut dalam ketiga segi tiga tersebut. Karena jumlah sudut-sudut dalam segi tiga adalah 180° maka jumlah sudut-sudut dalam segi lima adalah 3x180° atau sama dengan 540°.
Secara umum kita bisa membagi segi n menjadi segi tiga yang banyaknya adalah (n-2). Dengan demikian, jumlah sudut-sudut dalam segi n adalah sama dengan (n-2)180°. Cukup sederhana, bukan?
Bagaimana memaksimalkan rumus ini untuk menyelesaikan persoalan lain yang lebih kompleks merupakan hal yang penting.
Sekarang, mari kita perhatikan salah satu soal yang pernah muncul pada seleksi IMO berikut ini:
Perhatikan gambar! Hitunglah jumlah besar sudut-sudut A1, A2, A3, A4, A5, A6 dan A7, pada bangun berikut:
Bagaimana menyelesaikan soal di atas? Mari kita selesaikan bersama.
Perhatikan gambar di atas! Sekarang mari kita perhatikan segi empat A1 A3 A5 B1. Jumlah sudut-sudut pada segi empat adalah (4-2)180° atau sama dengan 360°. Dengan cara ini kita dapatkan:
A1 + A3 + A5 + B1 = 360° (1)
Analog dengan cara di atas, kita bisa mendapatkan:
A1 + A4 + A6 + B2 = 360° (2)
A2 + A5 + A7 + B3 = 360° (3)
A1 + A4 + A6 + B4 = 360° (4)
A2 + A4 + A7 + B5 = 360° (5)
Jika kelima persamaan di atas dijumlahkan, kita akan mendapatkan:
2A1 + 2A2 + 2A3 + 3A4 + 2A5 + 2A6 + 2A7 + B1 + B2 + B3 + B4 + B5 = 1.800°
<=>
2 (A1+A2+A3+A4+A5+A6+A7)+ A4 + B1 + B2 + B3 + B4 + B5 = 1.800°
Untuk menghemat tempat, persamaan di atas disederhanakan menjadi:
2 (A1+A2+...+A7)+A4+(B1+B2+ ... +B5) = 1.800° (6)
Sekarang mari kita perhatikan segi enam A4B1B2B3B4B5! Jumlah sudut-sudut dalam segi enam adalah (4-2) 180° atau sama dengan 720°. Jadi kita bisa mendapatkan persamaan:
A1+(B1 + B2 +... +B5) = 720° (7)
Persamaan (7) ini kita substitusikan ke persamaan (6), sehingga persamaan (6) menjadi:
2 (A1 + A2+ ... + A7) +720° = 1.800°
2 (A1 + A2+ ... + A7) = 1.080°
(A1 + A2+ ... + A7) = 540°
Jadi jumlah sudut A1, A2, A3, A4, A5, A6 dan A7 adalah 540°. Sederhana sekali.
Latihan:
Perhatikan gambar berikut!
Berapakah jumlah 9 sudut-sudut ujung pada bangun tersebut?
Selamat mencoba!
Wahyu Kris Aries W
mahasiswa teknik sipil Universitas Kristen Cipta Wacana
Malang, peminat matematika
Kompas
Minggu, 09/11/01
JIKA kita memahami konsep dasar matematika secara benar maka kita akan mendapatkan manfaat yang cukup besar. Konsep dasar pada matematika sebenarnya sangat sederhana. Salah satu konsep tersebut adalah konsep tentang sudut.
Kita semua tahu bahwa jumlah sudut-sudut dalam segi n adalah (n-2)180°. Membuktikan kebenaran rumus ini secara matematis pun merupakan hal yang cukup mudah. Tetapi, untuk penyegaran mari kita perhatikan uraian singkat berikut ini:
Kita ambil salah satu kasus, berapakah jumlah sudut-sudut dalam segi lima? Untuk menjawab pertanyaan ini, kita bisa membagi segi lima menjadi tiga buah segi tiga (lihat gambar).
Berdasarkan gambar di atas kita bisa mengemukakan bahwa jumlah sudut-sudut dalam segi lima adalah sama dengan jumlah sudut-sudut dalam ketiga segi tiga tersebut. Karena jumlah sudut-sudut dalam segi tiga adalah 180° maka jumlah sudut-sudut dalam segi lima adalah 3x180° atau sama dengan 540°.
Secara umum kita bisa membagi segi n menjadi segi tiga yang banyaknya adalah (n-2). Dengan demikian, jumlah sudut-sudut dalam segi n adalah sama dengan (n-2)180°. Cukup sederhana, bukan?
Bagaimana memaksimalkan rumus ini untuk menyelesaikan persoalan lain yang lebih kompleks merupakan hal yang penting.
Sekarang, mari kita perhatikan salah satu soal yang pernah muncul pada seleksi IMO berikut ini:
Perhatikan gambar! Hitunglah jumlah besar sudut-sudut A1, A2, A3, A4, A5, A6 dan A7, pada bangun berikut:
Bagaimana menyelesaikan soal di atas? Mari kita selesaikan bersama.
Perhatikan gambar di atas! Sekarang mari kita perhatikan segi empat A1 A3 A5 B1. Jumlah sudut-sudut pada segi empat adalah (4-2)180° atau sama dengan 360°. Dengan cara ini kita dapatkan:
A1 + A3 + A5 + B1 = 360° (1)
Analog dengan cara di atas, kita bisa mendapatkan:
A1 + A4 + A6 + B2 = 360° (2)
A2 + A5 + A7 + B3 = 360° (3)
A1 + A4 + A6 + B4 = 360° (4)
A2 + A4 + A7 + B5 = 360° (5)
Jika kelima persamaan di atas dijumlahkan, kita akan mendapatkan:
2A1 + 2A2 + 2A3 + 3A4 + 2A5 + 2A6 + 2A7 + B1 + B2 + B3 + B4 + B5 = 1.800°
<=>
2 (A1+A2+A3+A4+A5+A6+A7)+ A4 + B1 + B2 + B3 + B4 + B5 = 1.800°
Untuk menghemat tempat, persamaan di atas disederhanakan menjadi:
2 (A1+A2+...+A7)+A4+(B1+B2+ ... +B5) = 1.800° (6)
Sekarang mari kita perhatikan segi enam A4B1B2B3B4B5! Jumlah sudut-sudut dalam segi enam adalah (4-2) 180° atau sama dengan 720°. Jadi kita bisa mendapatkan persamaan:
A1+(B1 + B2 +... +B5) = 720° (7)
Persamaan (7) ini kita substitusikan ke persamaan (6), sehingga persamaan (6) menjadi:
2 (A1 + A2+ ... + A7) +720° = 1.800°
2 (A1 + A2+ ... + A7) = 1.080°
(A1 + A2+ ... + A7) = 540°
Jadi jumlah sudut A1, A2, A3, A4, A5, A6 dan A7 adalah 540°. Sederhana sekali.
Latihan:
Perhatikan gambar berikut!
Berapakah jumlah 9 sudut-sudut ujung pada bangun tersebut?
Selamat mencoba!
Wahyu Kris Aries W
mahasiswa teknik sipil Universitas Kristen Cipta Wacana
Malang, peminat matematika
Kompas
Minggu, 09/11/01
Subscribe to:
Posts (Atom)